
CROP SCIENCE, VOL. 49, JANUARY–FEBRUARY 2009   1

REVIEW & INTERPRETATION

The use of marker-assisted selection (MAS) in plant breeding 
has continued to increase in the public and private sectors. 

Most applications, however, have been constrained to simple, 
monogenic traits (reviewed by Xu and Crouch, 2008). While 
MAS has had signifi cant impacts in backcrossing of major genes 
into elite varieties (Holland, 2004), backcrossing is regarded as 
the most conservative of breeding methods because improvement 
occurs through the pyramiding of only a few target genes (Lee, 
1995). Gene pyramiding is ineffi  cient for quantitative traits that 
are often controlled by many small-eff ect quantitative trait loci 
(QTL; Kearsey and Farquhar, 1998).

Current MAS methods are better suited for manipulating a 
few major eff ect genes than many small-eff ect genes (Dekkers and 
Hospital, 2002). Unfortunately, these small-eff ect genes underlie 
the complex polygenic traits that are crucial for the success of 
new crop varieties (Crosbie et al., 2003). Two primary limitations 
to MAS are (i) the biparental mapping populations used in most 
QTL studies do not readily translate to breeding applications and 
(ii) statistical methods used to identify target loci and implement 
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MAS have been inadequate for improving polygenic traits 
controlled by many loci of small eff ect. The application 
of genomic selection (GS) proposed by Meuwissen et al. 
(2001) to breeding populations using high marker densi-
ties is emerging as a solution to both of these defi ciencies. 
We review here current GS methods and their perfor-
mance. In addition, we present future directions for GS 
research and some exciting opportunities GS provides that 
could revolutionize crop improvement.

CURRENT MAS LIMITATIONS
The most common method of QTL detection is the use of 
a biparental mapping population. While these studies are 
important to the understanding of genetic architecture, 
building mapping populations distinct from breeding 
populations often strains the resources of a breeding pro-
gram. Available resources limit the size of mapping popu-
lations and, consequently, the accuracy of QTL position 
and eff ect estimates (Dekkers and Hospital, 2002; Schön 
et al., 2004). Also, allelic diversity and genetic background 
eff ects that are present in a breeding program will not be 
captured with a single biparental population. Therefore, 
multiple mapping populations are needed, QTL positions 
require validation, and QTL eff ects must be reestimated 
by breeders in their specifi c germplasm. The validation 
in locally adapted germplasm is important because poor 
estimates of the numerous small-eff ect QTL will lead to 
gains from MAS that are inferior to traditional pheno-
typic selection (Bernardo, 2001). Therefore, the resources 
required for QTL detection coupled with validation and 
eff ect reestimation limit the eff ectiveness of biparental 
population derived QTL for MAS in plant breeding pop-
ulations (reviewed by Holland, 2004).

To avoid this disconnect between biparental and breed-
ing populations, linkage disequilibrium (LD)–based map-
ping can be used for dissecting complex traits in breeding 
populations that already have extensive phenotypic data 
across locations and years ( Jannink et al., 2001; Rafalski, 
2002). This strategy avoids the need to develop special 
mapping populations that impose an additional burden on 
breeding programs. Also, mapping within breeding pop-
ulations will allow for QTL identifi cation and allelic value 
estimates that can be directly utilized by MAS without 
the need for extensive validation (Breseghello and Sor-
rells, 2006; Holland, 2004). However, low heritability, 
small population sizes, few large-eff ect QTL, confounding 
population structure, and arbitrary signifi cance thresholds 
found in current association mapping eff orts allow iden-
tifi cation of only a few QTL with overestimated eff ects 
(Beavis, 1998; Schön et al., 2004; Xu, 2003a).

To minimize the limitations for successful MAS, 
Lande and Thompson (1990) proposed a visionary two-
step approach: (i) select signifi cant markers from large 
marker sets, and (ii) combine phenotypic information 

with signifi cant markers in a selection index that would 
explain a signifi cant proportion of additive genetic vari-
ance. In the fi rst step, they were unable to estimate all 
marker eff ects simultaneously with simple regression due 
to the lack of degrees of freedom. Therefore, they pro-
posed selecting the most signifi cant markers from the pre-
vious generation via multiple linear regressions and then 
reestimating eff ects of the selected markers in the current 
generation with independent multiple regressions (Lande 
and Thompson, 1990).

Lande and Thompson (1990) introduced this two-
step approach to handle large marker sets because they 
estimated that hundreds of molecular markers would be 
needed to capture a signifi cant proportion of the additive 
genetic variance. In the early 1990s, genomewide marker 
coverage was a limiting factor for MAS, but in recent 
years, plant breeders have encountered a major shift in the 
amount of genomic information available due to the rapid 
advances in marker technologies. Although genotyping 
is still a major expense, the declining costs per marker 
data point have facilitated large-scale genotyping eff orts 
in breeding programs. For example, the Monsanto Com-
pany (St. Louis, MO) reported that from 2000 to 2006, 
they experienced a sixfold decrease in cost per marker 
data point and increased the volume of their marker data 
by 40-fold (Eathington et al., 2007). The availability of 
abundant markers and the reduction of genotyping costs 
will present new tools for plant breeders only if statistical 
methodologies for the utilization of genomewide marker 
coverage are developed.

GENOMIC SELECTION 
FOR BREEDING VALUE ESTIMATION
The two-step process of Lande and Thompson (1990) has 
been criticized as an ineffi  cient use of available data (Meu-
wissen et al., 2001): one would rather want to use all avail-
able data in a single step to achieve maximally accurate 
estimates of marker eff ects. Genomic selection is a form of 
MAS that simultaneously estimates all locus, haplotype, 
or marker eff ects across the entire genome to calculate 
genomic estimated breeding values (GEBVs; Meuwissen et 
al., 2001). This approach contrasts greatly with traditional 
MAS because there is not a defi ned subset of signifi cant 
markers used for selection. Instead, GS analyzes jointly all 
markers on a population attempting to explain the total 
genetic variance with dense genomewide marker cover-
age through summing marker eff ects to predict breeding 
value of individuals (Meuwissen et al., 2001).

The central process of GS is the calculation GEBVs 
for individuals having only genotypic data using a model 
that was “trained” from individuals having both pheno-
typic and genotypic data (Fig. 1; Meuwissen et al., 2001). 
The population of individuals with both phenotypic and 
genotypic data is known as the “training population” 
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et al., 2001), and 15 to 20 kb in a diversity panel of sor-
ghum (Sorghum bicolor; Hamblin et al., 2005). Examples 
from diversity panels may give rough predictions of LD 
decay in a species, but because many factors aff ect LD, 
individual breeding programs will need to determine LD 
decay rates on a case-by-case basis in their specifi c breed-
ing populations.

Linkage disequilibrium estimates can be used to deter-
mine target marker densities for GS. For example, Calus 
and Veerkamp (2007) used the average r2 between adjacent 
markers as a measure of their marker density relative to the 
decay of LD. They found that for a high heritability trait, 
average adjacent marker r2 of 0.15 was suffi  cient, but for 
a low heritability trait, increasing the r2 to 0.2 improved 
the accuracy of GEBV predictions. These marker densities 
may still be out of reach for some crops or populations. 
Looking to the near future, however, high throughput 
sequencing has made marker discovery aff ordable for most 
crop species, and the continued reduction of genotyping 
costs will facilitate dense genomewide marker coverage 
for all crop species (reviewed in Zhu et al., 2008). Note 
that the conditions of complete genome saturation and of 
at least one marker in LD with each QTL need not be 
met to derive useful prediction models for GEBV. While 
it is tempting to surmise a minimum number of markers 
needed to obtain useful GEBVs, the many factors aff ect-
ing this number and the lack of empirical results currently 
available would make any guess meaningless. Clearly, this 
subject requires urgent attention.

STATISTICAL MODELS 
AND PERFORMANCE
The challenge of QTL analysis is the selection of the 
appropriate statistical model to identify QTL and esti-
mate their eff ects (Broman and Speed, 2002). In breeding 
programs, statistical methods for GS will need to simul-
taneously estimate many marker eff ects from a limited 
number of phenotypes. A greater number of explanatory 

as it is used to estimate model parameters 
that will subsequently be used to calculate 
GEBVs of selection candidates (e.g., breed-
ing lines) having only genotypic data (Fig. 
1). These GEBVs are then used to select the 
individuals for advancement in the breeding 
cycle. Therefore, selection of an individual 
without phenotypic data can be performed 
by using a model to predict the individual’s 
breeding value (Meuwissen et al., 2001). 
To maximize GEBV accuracy, the training 
population must be representative of selec-
tion candidates in the breeding program to 
which GS will be applied.

Historically, estimated breeding values 
(EBVs) for quantitative traits have been cal-
culated by best linear unbiased prediction (BLUP) based 
only on phenotypic data of individuals and their relatives 
(Henderson, 1984). The use of EBVs via BLUP has been 
popular in animal breeding and in recent years has been 
used by plant breeders (reviewed by Piepho et al., 2007). 
However, data on markers linked to known QTL can also 
be used for calculation of EBVs (Fernando and Grossman, 
1989); this method was predicted to increase gains from 
selection in animal breeding up to 38% (Meuwissen and 
Goddard, 1996). These results were encouraging, but they 
require extensive prior QTL discovery eff orts in non-
breeding populations.

MARKER DENSITY AND 
LINKAGE DISEQUILIBRIUM
Genomic selection diff ers from current MAS strategies 
because instead of only using markers that have a pre-
defi ned signifi cant correlation with a trait, all markers are 
used to estimate breeding values for each genotype. Conse-
quently, dense marker coverage is needed to maximize the 
number of QTL in LD with at least one marker, thereby 
also maximizing the number of QTL whose eff ects will 
be captured by markers. Target marker density will be 
dictated by the rate of LD decay across the genome, as 
assessed by the relationship between intermarker coeffi  -
cient of determination, r2, and genetic distance.

Rate and pattern of LD decay are aff ected by popula-
tion characteristics such as evolutionary history, mating 
system, population size, admixture, recombination rate, 
and selection eff ects (Gaut and Long, 2003). Therefore, 
LD decay rates are highly variable among species, popula-
tions, and genomic regions. Examples of this variability 
in LD decay rates include the following: 75 to 500 kb 
in a diversity panel of rice (Oryza sativa; Mather et al., 
2007), 10 to 20 cM (roughly 50–100 Mb) in elite culti-
vars of wheat (Triticum aestivum; Chao, 2007; Maccaferri 
et al., 2005), 0.1 to 1.5 kb in diverse inbred lines of maize 
(Zea mays ssp. mays; Remington et al., 2001; Tenaillon 

Figure 1. Diagram of genomic selection (GS) processes starting from the training 

population and selection candidates continuing through to genomic estimated 

breeding value (GEBV)–based selection. Note that while we show here a single 

occurrence of model training, training can be performed iteratively as new phenotype 

and marker data accumulate.
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variables (markers) than observations (phenotyped lines) 
leads to a lack of degrees of freedom that must be handled 
through the selection and use of the most appropriate sta-
tistical model, that is, the model that results in the highest 
GEBV accuracy with consideration of model complex-
ity and computation requirements. In the assessment of 
model performance, GEBV accuracy has a precise defi ni-
tion, namely, the Pearson correlation between the GEBV 
and the true breeding value (TBV). Accuracy defi ned in 
this way is directly proportional to gain from selection 
when selecting on the GEBV, that is, R = irσ

A
, where R 

is the response, i is the selection intensity, r is the accu-
racy defi ned above, and σ

A
 is the square root of the addi-

tive genetic variance of TBV (Falconer and Mackay, 1996, 
p. 189). We briefl y describe here three models: stepwise 
regression, ridge regression, and Bayesian estimation.

Stepwise Regression for MAS
Traditional MAS considers marker eff ects as fi xed, requir-
ing stepwise regression (SR) approaches that avoid the lack 
of degrees of freedom problem by fi tting markers singly 
or in small groups. After the model selection process dur-
ing which markers are added or removed from the model 
on the basis of arbitrary signifi cance thresholds, nonsig-
nifi cant markers are assigned an eff ect of zero and signifi -
cant marker eff ects are simultaneously tested to estimate 
their eff ects. This stepwise approach to set nonsignifi cant 
marker eff ects to zero is critical for maintaining model 
estimability (Lande and Thompson, 1990). Signifi cance 
thresholds that may maximize response to selection can-
not be determined analytically, although guidelines have 
been established through simulation (Hospital et al., 1997; 
Moreau et al., 1998). The general guideline is that liberal 
p-value thresholds improve selection gain (Hospital et al., 
1997; Moreau et al., 1998). Nevertheless, when only sig-
nifi cant marker eff ects are estimated, only a portion of the 
genetic variance will be captured (Goddard and Hayes, 
2007) and eff ects retained in the model can be greatly 
overestimated (Beavis, 1998; Hayes, 2007), particularly 
when many eff ects are tested.

Limitations of SR for MAS in practice were reported 
by Moreau et al. (2004). In 300 test-crossed maize prog-
enies evaluated in 14 trials over 11 locations for dry grain 
yield and grain moisture, they discovered 16 QTL for 
dry grain yield and 12 QTL for grain moisture explain-
ing 50% of the total phenotypic variance of both traits. 
When using an index combining phenotypic and marker 
information for a single cycle followed by two cycles of 
marker-only selection, they observed no genetic gain 
from the two cycles of marker selection (Moreau et al., 
2004). They suggested that this ineffi  ciency of MAS could 
be caused by fi xation of major eff ect loci in the fi rst cycle 
of selection and inaccurate estimation of remaining eff ects 
resulting in no gain from the cycles of marker selection 

(Moreau et al., 2004). These complications were probably 
consequences of SR that detects only large eff ects and that 
overestimates eff ects.

In a GS simulation by Meuwissen et al. (2001), SR 
resulted in low GEBV accuracy due to limited detec-
tion of QTL. The simulated outcrossing population had 
an eff ective population size of 100 with a trait heritabil-
ity of 0.5. After 1000 generations of random mating to 
establish mutation-drift equilibrium, generation 1001 had 
a population size of 200 (100 males; 100 females). Two 
generations (1002 and 1003) of size 2000 with 20 half-
sib families of size 100 individuals were then simulated. 
Generations 1001 and 1002 were used to train the model 
while GEBV accuracy was calculated on generation 1003. 
Genotypic data consisted of 101 multi-allelic markers on 
each of 10 chromosomes of length 100 cM. Adjacent pairs 
of markers were considered haplotypes such that 50,000 
haplotype eff ects were estimated. The accuracy of GEBV 
for SR (0.318) was less than that expected for strictly phe-
notype-based BLUP (about 0.4; Meuwissen et al., 2001). 
In agreement with Lange and Whittaker (2001), Meuwis-
sen et al. (2001) concluded that SR’s procedure to identify 
marker subsets is suboptimal for MAS in situations where 
the majority of the additive genetic variance is generated 
by many QTL. Note, however, that the GEBV accuracy of 
SR depends on the details of the analysis: using the Meu-
wissen et al. (2001) simulation design, Habier et al. (2007) 
found that SR produced an accuracy of 0.61. Habier et al. 
(2007) attributed this diff erence to the use of a less-strin-
gent signifi cance threshold than was used by Meuwissen 
et al. (2001). This conclusion was supported by simula-
tions showing prediction accuracy changes with changes 
in signifi cance thresholds (Piyasatian et al., 2007).

Ridge Regression BLUP 
for Genomic Selection
The ridge regression BLUP (RR-BLUP) method can 
simultaneously estimate all marker eff ects for GS (Meu-
wissen et al., 2001; Whittaker et al., 2000). Rather than 
categorizing markers as either signifi cant or as having no 
eff ect, ridge regression shrinks all marker eff ects toward 
zero (Breiman, 1995; Whittaker et al., 2000). The method 
makes the assumption that markers are random eff ects 
with a common variance (Meuwissen et al., 2001; Table 
1). Equal variance does not assume that all markers have 
the same eff ect (Bernardo and Yu, 2007) but that marker 
eff ects are all equally shrunken toward zero. Nevertheless, 
the assumption that individual markers have the same vari-
ance is unrealistic, and therefore, RR-BLUP incorrectly 
treats all eff ects equally (Xu, 2003b). Despite the incorrect 
assumption of equal marker variance, RR-BLUP is supe-
rior to SR because it can simultaneously estimate eff ects 
for all markers: by avoiding marker selection, it avoids the 
biases that go with that selection (Whittaker et al., 2000). 
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Also, a ridge regression approach is more appropriate than 
SR for instances in which there are few or no large eff ects 
and many small eff ects (Breiman, 1995), as is the case with 
most quantitative traits.

In the simulation by Meuwissen et al. (2001), RR-
BLUP had a GEBV accuracy of 0.732, which was 41 and 
33% greater than SR and phenotype-based BLUP, respec-
tively. With higher SR signifi cance thresholds, Habier et 
al. (2007) reported that RR-BLUP resulted in 4 and 11% 
increase in GEBV accuracy compared to SR and tradi-
tional BLUP, respectively. In addition to these studies, 
Muir (2007) simulated 512 genotypes with a low herita-
bility trait (h2 = 0.1) in each of four training generations. 
These conditions resulted in an even higher RR-BLUP 
GEBV accuracy of 0.83 despite the lower heritability. 
This gain in GEBV accuracy was attributed to the four 
training generations used by Muir (2007), as opposed to 
two generations used in previous studies (Habier et al., 
2007; Meuwissen et al., 2001).

In a GS simulation on a population derived from a 
biparental cross of maize inbreds, Bernardo and Yu (2007) 
found that relative to phenotypic selection, the increase in 
selection gain from RR-BLUP was 18% greater than that 
from SR for a highly heritable trait (h2 = 0.8) controlled by 
20 QTL. For a trait with low heritability (h2 = 0.2) con-
trolled by 100 QTL, the increase in selection gain from 
RR-BLUP was 43% greater than that from SR (Bernardo 
and Yu, 2007). Similar results were observed by Piyasatian 
et al. (2007), who found that in the fi rst round of selec-
tion in a simulated cross between two inbred parents, gain 
from selection from RR-BLUP was 109 and 32% greater 
than that of traditional BLUP and SR, respectively.

Bayesian Estimation
The simplifying assumption of equal and fi xed marker 
eff ect variances allows RR-BLUP parameters to be effi  -
ciently computed using maximum likelihood methods 
(Meuwissen et al., 2001). While RR-BLUP can provide a 
conservative EBV by shrinking all marker eff ects equally 

(Muir, 2007), the presumably incorrect assumption that 
underlies it can lead to overshrinking of large eff ects (Table 
1; Meuwissen et al., 2001; Xu, 2003b). Bayesian meth-
ods have been adopted to relax this assumption and bet-
ter model marker eff ects of diff ering sizes (Hayes, 2007). 
Here, a separate variance is estimated for each marker, and 
the variances are assumed to follow a specifi ed prior dis-
tribution (Meuwissen et al., 2001).

Meuwissen et al. (2001) proposed two types of prior 
distribution for the marker variance. The fi rst type of prior 
(BayesA) uses an inverted chi-square distribution with 
degrees of freedom and scale parameters chosen so that the 
mean and variance of the distribution match the expected 
mean and variance of the marker variances. In the simula-
tion design described above, BayesA outperformed both 
SR and RR-BLUP with a GEBV accuracy of 0.798. Dif-
ferent parameter values for the BayesA inverted chi-square 
prior distribution have also been proposed that place much 
higher density on marker variances close to zero, thereby 
forcing more marker eff ect estimates close to zero (ter 
Braak et al., 2005; Xu, 2003b).

The BayesA method of Xu (2003b) was applied to 
data from a doubled haploid barley (Hordeum vulgare) pop-
ulation of 145 lines with 127 single nucleotide polymor-
phism markers covering 1500 cM for yield, heading date, 
maturity, test weight, lodging, and kernel weight. Xu 
(2003b) reported that SR and BayesA both found large-
eff ect QTL but that BayesA provided better QTL location 
and eff ect estimation. Also, in simulation of a population 
derived from a biparental inbred cross, ter Braak et al. 
(2005) found that BayesA prior parameters forcing more 
marker eff ect shrinkage gave better estimates of QTL 
eff ects than did the Meuwissen et al. (2001) parameters. 
A comparison of these diff erent prior parameterizations in 
an association genetics rather than linkage mapping con-
text has not been done.

The second type of prior distribution Meuwissen et al. 
(2001) proposed (BayesB) contrasts with BayesA by having 
a prior mass at zero, thereby allowing for markers with no 

Table 1. General characteristics and trends of performance for traditional best linear unbiased predictor (BLUP) and genomic 

selection methods. Note that these are general summaries based on current understanding of model performance.

Method
Marker effect; 

variance 
assumptions

Proportion
of markers 

 fi tted in model

Performance with increased
Large-effect 

QTL
Small-effect 

QTL

Inbreeding 
depression; loss 

of diversity
Marker 
density

QTL† 
number 

Traditional

BLUP

N/A N/A N/A N/A Captured only 

by phenotype

Captured only 

by phenotype

Yes

Stepwise regression Fixed Subset Reduced Reduced Overestimated Excluded Marginally Reduced

RR-BLUP‡ Random; Equal All Reduced§ Increased Underestimated Captured Reduced

BayesA Random; 

Unique All > 0

All ? Reduced More accurately 

estimated

Captured Reduced

BayesB Random; 

Unique Some = 0

All Insensitive§ Reduced More accurately 

estimated

Captured Reduced

†QTL, quantitative trait locus.

‡RR, ridge regression.

§Source: Fernando (2007).
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eff ects. The inverted chi-square prior of BayesA may be set 
to strongly regress variances toward zero, but it does not 
permit the value of zero itself. BayesB thus presents a more 
realistic prior because we expect that some regions of the 
genome will carry no QTL, so that some markers should 
have estimates of zero eff ect. The results from Meuwissen 
et al. (2001) showed that BayesB had a GEBV accuracy 
of 0.848, greater than all other methods tested. Of the 
Bayesian methods, BayesB not only was more accurate but 
was also less computationally demanding. Meuwissen et 
al. (2001) concluded that Bayesian methods outperformed 
RR-BLUP through better estimation of large-eff ect QTL 
by allowing for unequal variances.

de Roos et al. (2007) used Bayesian modeling as 
described by Meuwissen and Goddard (2004) in actual 
dairy cattle data for a single chromosome containing 32 
markers with one being a known causal mutation for fat 
percentage. They compared Bayesian GS that used all 
marker information to regression on the genotype at the 
known causal mutation and to traditional BLUP with no 
markers. Using a cross validation population of 1135, they 
concluded that Bayesian GS and regression on the causal 
mutation had similar accuracies (0.752 and 0.746, respec-
tively), with both being superior to traditional BLUP (EBV 
accuracy of 0.508). Interestingly, the GS analysis often did 
not place the causal mutation in the correct marker bracket 
but was nevertheless able to calculate accurate GEBV. This 
robustness of GEBV accuracy provides evidence that GS 
can perform well for breeders in the absence of the discov-
ery of QTL (de Roos et al., 2007).

In the future, genotyping costs will decrease, but it 
is unlikely that phenotyping costs will also decrease, thus 
shifting goals toward reducing phenotyping and increas-
ing genotyping. Bernardo and Yu (2007) suggested this 
shift would be feasible when the cost of a marker data 
point is 5000 times less than the cost of phenotyping a 
single entry. Regardless of the threshold, it is desirable 
to decrease the number of phenotypic records needed for 
training models for accurate GEBVs. Simulations by Meu-
wissen et al. (2001) showed that with 2200 phenotypic 
records, RR-BLUP and BayesB had GEBV accuracies of 
0.732 and 0.848, respectively. When the number of pheno-
typic records was reduced to 500, RR-BLUP and BayesB 
GEBV accuracies decreased to 0.579 and 0.708, respec-
tively (Meuwissen et al., 2001). Thus, the eff ect of low 
numbers of phenotypic records was less severe for BayesB 
than for RR-BLUP. In addition, Fernando (2007) found 
that in contrast to RR-BLUP, BayesB’s GEBV accuracy 
did not decline as the number of markers increased. These 
fi ndings suggest that Bayesian methods may be better 
suited to handling situations with increased colinearity 
between markers caused by extremely large markers sets 
and limited phenotypic records (Table 1). Computational 
issues may arise for Bayesian methods under high marker 

densities and colinearities; these will need to be resolved 
by improved statistical methods (ter Braak et al., 2005).

INCLUSION OF A POLYGENIC EFFECT 
TERM ACCOUNTING FOR KINSHIP
Phenotypic information from relatives contribute to an 
individual’s EBV because EBVs vary according to the 
additive relationship (A) matrix, that is, a matrix that con-
tains for each pair of individuals the proportion of alleles 
for which they are identical by descent (van Arendonk et 
al., 1994; Lynch and Walsh, 1998, p. 751). When markers 
are introduced into the analysis, some genetic eff ects will 
be captured by markers in LD with QTL, but residual 
genetic eff ects will still be assumed to vary according to 
the A matrix. These residual eff ects can be captured by 
including a polygenic term in the model. In association 
mapping, the inclusion of this matrix has been popular-
ized as a statistical control for population structure and 
familial relatedness (Yu et al., 2006; Zhao et al., 2007).

The A matrix can be calculated on the basis of the ped-
igree or the marker data, with pedigree information pro-
viding exact expected relationships and markers providing 
estimated realized relationships. When marker number is 
high enough that marker sampling plays a minor role (i.e., 
relationship estimates on the basis of markers are accurate), 
marker-estimated relationships will better refl ect true 
relationships than will pedigree-expected relationships. In 
particular, four mechanisms lead realized relationships to 
diverge from their expectation: random Mendelian seg-
regation, segregation distortion, selection, and pedigree 
recording errors. For example, parental contributions to 
inbreds vary from their expected 50% because of random 
Mendelian segregation during selfi ng. For the genomes 
of maize and wheat, there is a 10% probability that single 
seed decent–derived inbreds will have less than 38 and 
43% genome contribution from one parent, respectively 
(Frisch and Melchinger, 2007).

The value of including a polygenic eff ect term in the 
model will depend strongly on marker density available in 
the study for two reasons. First, if density is such that all 
QTL are in strong LD with a marker, all genetic eff ects 
will be absorbed by markers and none will be left for the 
polygenic term to capture (Bernardo and Yu, 2007; Meu-
wissen et al., 2001; Zhong and Jannink, 2007). Second, 
even markers that are in linkage equilibrium with all QTL 
carry information about relationships among individuals, 
and this information contributes to the accuracy of GEBV 
(Habier et al., 2007). Indeed, this contribution depends on 
the number of markers included in the GS method, and 
because SR uses only a subset of markers, it benefi ts least 
from genetic relationship contributions to GEBV accu-
racy (Habier et al., 2007).

Research to look explicitly at the value of including a 
polygenic eff ect term used adjacent-marker r2 as a measure 
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of marker density. For a high heritability trait (h2 = 0.5), 
the polygenic eff ect term increased GEBV up to an adja-
cent-marker r2 of 0.14, while for a low heritability trait (h2 
= 0.1), the term made no diff erence already at an r2 of 0.11 
(Calus and Veerkamp, 2007). At lower adjacent-marker r2, 
the polygenic term fulfi lls its role of explaining genetic 
variance not absorbed by markers, and it therefore con-
tributes to GEBV accuracy (Calus and Veerkamp, 2007; 
Villanueva et al., 2005).

SELECTION INDEX THEORY 
APPLIED TO GENOMIC SELECTION
A selection index integrates and weights multiple traits 
to achieve greater gains than if traits with independent 
thresholds are individually or collectively selected (Hazel 
and Lush, 1942; Hazel, 1943). Selection indices can incor-
porate marker data as indirect selection traits (Lande and 
Thompson, 1990; Neimann-Sorensen and Robertson, 
1961; Smith, 1967). However, current MAS applied to 
loci selected by SR violates the selection index assump-
tions of multivariate normality and small changes in 
allele frequencies because selection is based on only few 
large eff ect loci (Dekkers, 2007; Lande and Thompson, 
1990). Because GS is based on many markers distributed 
throughout the genome, index selection assumptions are 
met, providing an opportunity to use index selection the-
ory to predict response to GS (Dekkers, 2007).

Dekkers (2007) used selection index theory by add-
ing marker-derived breeding values as a separate corre-
lated trait to the selection index (Lande and Thompson, 
1990). In a simulated pig breeding program, selection on 
only marker data could outperform phenotypic selection 
for low heritability traits (0.1) even with moderate GEBV 
accuracy (0.55). When marker and phenotypic data were 
both used for a single trait, even greater accuracies were 
observed. This increase was due to marker information 
that allowed for within family selection (Dekkers, 2007).

For two negatively correlated traits with heritabilities 
of 0.3 and 0.1, Dekkers (2007) found using only markers 
increased gains from selection over phenotypic selection 
by 8.5% for the index of the two traits and 66% for the low 
heritability trait alone. Using both markers and phenotype 
increased gains from selection over phenotypic selection 
by 21% for the index of the two traits and 80.5% for the 
low heritability trait alone. These results show the poten-
tial of GS to increase gains for multiple traits especially 
in cases where phenotypic data is available on selection 
candidates and traits have low heritability.

MAINTAINING GENETIC DIVERSITY AND 
REDUCING INBREEDING DEPRESSION
Gains from selection can be increased by raising the selec-
tion intensity or the accuracy of EBV of breeding lines. 
Increased selection intensity reduces the number of lines 

selected, thus lowering the eff ective population size and 
thereby increasing the loss of genetic variability. Tradi-
tional BLUP increases EBV accuracy by incorporating 
ancestor and collateral relative phenotypes in the calcula-
tion (Henderson, 1984). But including family information 
in EBV calculation increases the correlation between EBV 
of family members, making it more likely that multiple 
sibs will be selected (Wray and Thompson, 1990). Sibling 
coselection, in turn also reduces eff ective population size. 
Therefore, while increased selection intensity and a higher 
EBV accuracy lead to greater short-term gains from selec-
tion, they both may reduce long-term gains by decreas-
ing genetic variation and increasing rates of inbreeding 
(Quinton et al., 1992).

Daetwyler et al. (2007) reviewed these issues and 
determined that GS diff ers from simple phenotypic 
selection and traditional BLUP by using markers to more 
accurately estimate Mendelian sampling variation, that is, 
deviations between siblings within families. Mendelian 
sampling variation, generated by random segregation, is 
created anew each generation. Selecting strictly on this 
variation therefore enables sustained genetic progress by 
decreasing coselection of sibs and thus reducing inbreed-
ing and the loss of genetic variation (Woolliams et al., 
1999). Optimized selection schemes have been proposed 
where parent combinations are restricted by their level 
of coancestry to limit the loss of genetic variation and 
the rate of inbreeding (Grundy et al., 1998; Meuwis-
sen, 1997). In these schemes, an individual’s selective 
advantage depends largely on the Mendelian sampling 
term, that is, on its performance relative to its siblings 
(Avendaño et al., 2004). Unlike traditional BLUP based 
on pedigree data that account for average relationships, 
tracking markers enables GS to also track the random 
segregation that makes up the Mendelian sampling term. 
The benefi t is both more accurate EBVs and decreased 
correlation between EBVs within families, countering 
the mechanism whereby the use of family informa-
tion increases loss of genetic diversity (Daetwyler et 
al., 2007). Note that the greater emphasis placed by GS 
on the Mendelian sampling term does not completely 
negate variable long-term genetic contributions among 
individuals and its consequent increase in inbreeding 
rate. In particular, superior individuals carry superior 
alleles, and selection of those alleles will, in turn, lead 
their carriers to leave more off spring behind (Daetwyler 
et al., 2007). Thus, it still may be advisable to manage 
rates of inbreeding (e.g., Avendaño et al., 2004) even in 
the context of GS. Nevertheless, the advantages of GS 
in regard to inbreeding and the maintenance of genetic 
diversity should prove valuable for crops such as alfalfa 
(Medicago sativa) that suff er from inbreeding depression 
and for maintaining genetic variation in advanced cycle 
breeding programs.
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GAINS FROM SELECTION 
PER UNIT TIME
Marker-assisted selection strategies increase gain mainly 
through gain per unit time, rather than gain per cycle (Ber-
nardo and Yu, 2007; Edwards and Johnson, 1994; Hospital 
et al., 1997; Koebner and Summers, 2003; Meuwissen et 
al., 2001; Muir, 2007). To ascertain GS’s impact on gains 
per unit time, Schaeff er (2006) suggested a plan for imple-
menting GS into a dairy breeding program. Through 
reduction in time and costs needed to prove the value of a 
bull, assuming a GEBV accuracy of 0.75, Schaeff er (2006) 
determined that GS could provide a twofold increase in 
rate of genetic gain and save 92% of the costs of the cur-
rent progeny test based breeding program.

In plants, the importance of generation time varies 
between crops, but the goal of reducing cycle time remains. 
In maize, a crop that uses doubled haploids and off -season 
nurseries, test cross performance selection still requires at 
least 2 yr (Bernardo and Yu, 2007), providing an oppor-
tunity for GS to reduce unit time per selection cycle by 
reducing the need for progeny test data in every cycle. In 
the more extreme case of oil palm (Elaeis guineensis Jacq.), 
which takes 19 yr to complete a cycle of selection, Wong 
and Bernardo (2008) reported that GS reduced the selection 
cycle to 6 yr. Even with small population sizes (N = 50) that 
adversely eff ected GEBV accuracy, their simulations indi-
cated that GS would outperform MARS and phenotypic 
selection when considering gain per unit cost and time.

GENOTYPE × ENVIRONMENT 
INTERACTIONS AND EPISTASIS
Genotype × environment (G×E) interaction is a challenge 
in plant breeding because the large number of experimen-
tal lines and environments, that is, locations and years, 
make it impossible to test a line in all possible environ-
mental conditions of a breeding program’s target region 
(Allard and Bradshaw, 1964). Consider, however, that the 
genotype of any line is composed of alleles that, over time, 
will have been evaluated in a larger sample of target envi-
ronments than would be feasible for any particular line. 
Thus, it may be possible to accurately predict GEBV even 
in the presence of high G×E. As an extreme example, for 
winter annual crops, a severe winter may only occur once 
a decade. Variety releases for the region need to be hardy to 
such winters because crop failure even once per decade is 
too frequent. With GS, a given generation of experimental 
lines need never experience a test winter if the alleles they 
carry were characterized during a severe winter. Simi-
lar cases include the infrequent but devastating conditions 
caused by severe drought, fl ooding, disease pressure, and 
insect infestation. The broader insight that these examples 
illustrate is that with GS, lines are not evaluated solely on 
the basis of their own phenotypic performance, but on the 
basis of information shared across other lines, other years 

and locations, and even possibly other breeding programs. 
This information sharing should provide GS with stability 
in the face of G×E.

Anticipating the eff ect of epistasis on the potential of 
GS is diffi  cult. Almost all GS prediction accuracy eval-
uations derive from simulations that adopted additive 
genetic models. There is current debate, at both theoreti-
cal and empirical levels, of the likely importance of epista-
sis in the architecture of quantitative traits (Carlborg and 
Haley, 2004; Hill et al., 2008; Holland, 2007; Mackay, 
2008). To examine this issue, it is essential to distinguish 
between the genotypic value versus the breeding value of 
a line (Falconer and Mackay, 1996). The genotypic value 
is the expected phenotype of the line given its genotype 
and includes additive and nonadditive genetic eff ects. The 
breeding value is the expected phenotype of line’s prog-
eny and includes only additive eff ects. The additive mod-
els used by GS should predict the breeding value rather 
than genotypic value (Goddard and Hayes, 2007). Conse-
quently, correlations between GEBVs and line phenotypes 
may well be lower than those obtained in additive eff ect 
simulations, but they should nevertheless refl ect a line’s 
value as a parent. For cases in which estimates of genotypic 
value are desired in the presence of epistasis, methods are 
currently being developed and tested (e.g., Gianola et al., 
2006; Gianola and van Kaam, 2008; Gonzalez-Recio et 
al., 2008). Further empirical evaluation of the prediction 
accuracies of these methods should help address the ongo-
ing debate over the importance of epistasis in the mapping 
of genotype to phenotype. Because of the small contri-
bution that epistasis makes to breeding value (Holland, 
2001), GS using simpler additive models should be eff ec-
tive for maximizing gain from selection.

FUTURE DIRECTIONS

Statistical Methods

A statistical model will more faithfully capture QTL infor-
mation as its assumptions about the underlying genetic 
architecture, made explicit in the prior distributions of 
QTL eff ects or variance, are more correct (Meuwissen et 
al., 2001). There are two obstacles to translating this fact 
into improved models. First, GS may gain in accuracy 
not just by capturing more QTL information but also by 
better capturing relationship information (Habier et al., 
2007). There may be a tradeoff  between the kinds of prior 
distributions of eff ects that promote the use of these two 
information sources (Habier et al., 2007). Second, we sim-
ply do not know, for any complex trait, what the under-
lying genetic architecture is, and thus, we do not have 
adequate prior knowledge at our disposal. Therefore, sta-
tistical models that are relatively insensitive to the under-
lying architecture may be optimal for most populations, 
although identifying those models remains challenging.
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Finally, the marker technologies on which GS meth-
ods depend are constantly changing. Next-generation 
sequencing technologies and improvement of genotyping 
platforms present breeders with powerful tools for char-
acterizing the genetic composition of their germplasm. As 
these technologies continue to evolve, they will provide 
quantitatively and qualitatively diff erent information (e.g., 
copy number and epigenetic variation; Stranger et al., 
2007; Zhang et al., 2008), and statistical machinery will 
also need to evolve to use this information effi  ciently to 
increase prediction accuracy.

Software and Database Development
While statistical methods of prediction must be continually 
advanced, an integral part of their performance will be the 
software packages used to implement them. In conjunc-
tion with this software, robust databases that can effi  ciently 
link breeding lines, testing environments, genotypic data, 
phenotypic data, and breeding programs will need to be 
developed to simplify fl ow and use of information. While 
private breeding companies have invested heavily in data 
management systems that will likely be effi  cient in execut-
ing GS (e.g., Eathington et al., 2007), public sector breed-
ing programs also need database software that integrates 
the wide variety of data they generate (Heckenberger et 
al., 2008; Tinker and Yan, 2006). Recent developments in 
the public sector are promising, such as the Barley Coor-
dinated Agricultural Project Hordeum Toolbox (http://
hordeumtoolbox.org/), the GDPDM database schema 
that links with the association analysis software TASSEL 
(http://www.maizegenetics.net); the German GABI-
BRAIN project (http://brain.uni-hohenheim.de/eng/

indexeng.html), and the Canadian COOL-DUDE (Yan 
and Tinker, 2007). Adaptation of these tools to link with 
GS and development of user-friendly GS analyses them-
selves are needed to take GS from theory to practice.

CHANGES TO BREEDING 
PROGRAM STRUCTURE
The accuracies of GEBV observed in research off er the 
possibility that future elite and parental lines will be 
selected on their GEBV rather than on their phenotypic 
records from extensive fi eld testing. The most immediate 
impact of this circumstance would be a great increase in 
the speed of the breeding cycle (Fig. 2; Wong and Ber-
nardo, 2008), thereby increasing selection gains per unit 
time. This shift would also fundamentally alter the role of 
phenotyping in plant breeding (Fig. 2). Note that Fig. 2 
off ers a somewhat futuristic view of the use of GS, contin-
gent on its validation in practice. We do not, at this point, 
advocate dispensing with phenotypic evaluation before 
parent selection.

The purpose of phenotyping now is to select the best 
lines from a segregating population and to evaluate fewer 
lines with greater replication in each cycle of selection. 
But in a GS driven breeding cycle, the purpose of phe-
notyping is to estimate or reestimate marker eff ects. It is 
far from clear at this point whether it will be advanta-
geous to evaluate only the best lines or to evaluate few 
lines with high replication. Figure 2 therefore separates 
the germplasm improvement cycle from the prediction 
model improvement cycle. Indeed, if we use the guide-
lines for optimal QTL linkage mapping, evaluation should 
include not just the best but the best and the worst lines 

Figure 2. Flow diagram of a genomic selection breeding program. Breeding cycle time is shortened by removing phenotypic evaluation of 

lines before selection as parents for the next cycle. Model training and line development cycle length will be crop and breeding program 

specifi c. (GEBV = genomic estimated breeding value.)
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(Darvasi and Soller, 1992; Lander and Botstein, 1989) and 
many unreplicated lines instead of few replicated lines 
(Knapp and Bridges, 1990). Figure 2 also emphasizes the 
need for model updating and reevaluation. Marker eff ects 
may change as a result of allele frequency changes (Muir, 
2007) or of epistatic gene action. Model updating with 
each breeding cycle should mitigate reduced gains from 
GS caused by these mechanisms. Thus, GS could radically 
change the practice of fi eld evaluation for breeders. Of 
course, regardless of the breeding method used, fi nal fi eld 
evaluations of varieties across the target environments will 
be needed before they are distributed to farmers.

GS may also diminish the need for breeders to select 
parents strictly from the set of lines evaluated in their tar-
get environments (Goddard and Hayes, 2007). Once a 
predictive linear model is established for their target envi-
ronments, any genotype with high target environment 
specifi c GEBV will become a candidate. Thus, GS should 
facilitate germplasm exchange and increase the probabil-
ity of selecting useful germplasm.

CONCLUSIONS
It has been predicted for more than two decades that 
molecular marker technology would reshape breeding 
programs and facilitate rapid gains from selection (Stuber 
et al., 1982; Tanksley et al., 1989). The failure of cur-
rent MAS to signifi cantly improve polygenic traits has 
thwarted this prediction. Genomic selection looks to 
fulfi ll it by using genomewide marker coverage to accu-
rately estimate breeding values, accelerate the breeding 
cycle, and introduce greater fl exibility in the relation-
ship between phenotypic evaluation and selection. To do 
so, however, GS must shift from theory to practice. As 
evident in this review and interpretation, GS has almost 
exclusively been tested through simulation, and therefore, 
its potential value should be assessed with cautious opti-
mism. The accuracy of GS and its cost eff ectiveness must 
now be evaluated in breeding programs to provide the 
empirical evidence needed to warrant the addition of GS 
to the plant breeders’ toolbox.
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